Use Python for Analyzing Visualizing and Presenting Data: Use Python for Analyzing, Visualizing and Presenting Data

Get ready for your exam by enrolling in our comprehensive training course. This course includes a full set of instructional videos designed to equip you with in-depth knowledge essential for passing the certification exam with flying colors.
$14.99 / $24.99
Setup
-
1. Installation Setup and Overview7m
-
2. IDEs and Course Resources11m
-
3. iPython/Jupyter Notebook Overview15m
Learning Numpy
-
1. Creating arrays7m
-
2. Using arrays and scalars5m
-
3. Indexing Arrays14m
-
4. Array Transposition4m
-
5. Universal Array Function6m
-
6. Array Processing22m
-
7. Array Input and Output8m
Intro to Pandas
-
1. Series14m
-
2. DataFrames18m
-
3. Index objects5m
-
4. Reindex16m
-
5. Drop Entry6m
-
6. Selecting Entries10m
-
7. Data Alignment10m
-
8. Rank and Sort6m
-
9. Summary Statistics23m
-
10. Missing Data12m
-
11. Index Hierarchy14m
Working with Data: Part 1
-
1. Reading and Writing Text Files10m
-
2. JSON with Python4m
-
3. HTML with Python5m
-
4. Microsoft Excel files with Python4m
Working with Data: Part 2
-
1. Merge21m
-
2. Merge on Index13m
-
3. Concatenate9m
-
4. Combining DataFrames10m
-
5. Reshaping8m
-
6. Pivoting6m
-
7. Duplicates in DataFrames6m
-
8. Mapping4m
-
9. Replace3m
-
10. Rename Index6m
-
11. Binning6m
-
12. Outliers7m
-
13. Permutation5m
Working with Data: Part 3
-
1. GroupBy on DataFrames18m
-
2. GroupBy on Dict and Series13m
-
3. Aggregation13m
-
4. Splitting Applying and Combining10m
-
5. Cross Tabulation5m
Data Visualization
-
1. Installing Seaborn2m
-
2. Histograms9m
-
3. Kernel Density Estimate Plots26m
-
4. Combining Plot Styles6m
-
5. Box and Violin Plots9m
-
6. Regression Plots19m
-
7. Heatmaps and Clustered Matrices17m
Example Projects.
-
1. Data Projects Preview3m
-
2. Intro to Data Projects5m
-
3. Titanic Project - Part 117m
-
4. Titanic Project - Part 216m
-
5. Titanic Project - Part 316m
-
6. Titanic Project - Part 42m
-
7. Intro to Data Project - Stock Market Analysis3m
-
8. Data Project - Stock Market Analysis Part 111m
-
9. Data Project - Stock Market Analysis Part 218m
-
10. Data Project - Stock Market Analysis Part 310m
-
11. Data Project - Stock Market Analysis Part 47m
-
12. Data Project - Stock Market Analysis Part 528m
-
13. Data Project - Intro to Election Analysis2m
-
14. Data Project - Election Analysis Part 118m
-
15. Data Project - Election Analysis Part 221m
-
16. Data Project - Election Analysis Part 315m
-
17. Data Project - Election Analysis Part 426m
Machine Learning
-
1. Introduction to Machine Learning with SciKit Learn13m
-
2. Linear Regression Part 118m
-
3. Linear Regression Part 218m
-
4. Linear Regression Part 319m
-
5. Linear Regression Part 422m
-
6. Logistic Regression Part 114m
-
7. Logistic Regression Part 214m
-
8. Logistic Regression Part 312m
-
9. Logistic Regression Part 422m
-
10. Multi Class Classification Part 1 - Logistic Regression19m
-
11. Multi Class Classification Part 2 - k Nearest Neighbor23m
-
12. Support Vector Machines Part 113m
-
13. Support Vector Machines - Part 229m
-
14. Naive Bayes Part 110m
-
15. Naive Bayes Part 212m
-
16. Decision Trees and Random Forests32m
-
17. Natural Language Processing Part 17m
-
18. Natural Language Processing Part 216m
-
19. Natural Language Processing Part 321m
-
20. Natural Language Processing Part 416m
Appendix: Statistics Overview
-
1. Intro to Appendix B3m
-
2. Discrete Uniform Distribution6m
-
3. Continuous Uniform Distribution7m
-
4. Binomial Distribution13m
-
5. Poisson Distribution11m
-
6. Normal Distribution6m
-
7. Sampling Techniques5m
-
8. T-Distribution5m
-
9. Hypothesis Testing and Confidence Intervals20m
-
10. Chi Square Test and Distribution3m
-
11. Bayes Theorem10m
Appendix: SQL and Python
-
1. Introduction to SQL with Python10m
-
2. SQL - SELECT,DISTINCT,WHERE,AND & OR10m
-
3. SQL WILDCARDS, ORDER BY, GROUP BY and Aggregate Functions8m
Appendix: Web Scraping with Python
-
1. Web Scraping Part 112m
-
2. Web Scraping Part 212m
Appendix: Python Special Offers
-
1. Python Overview Part 119m
-
2. Python Overview Part 212m
-
3. Python Overview Part 310m