Use Python for Analyzing Visualizing and Presenting Data: Use Python for Analyzing, Visualizing and Presenting Data

Use Python for Analyzing Visualizing and Presenting Data: Use Python for Analyzing, Visualizing and Presenting Data

Get ready for your exam by enrolling in our comprehensive training course. This course includes a full set of instructional videos designed to equip you with in-depth knowledge essential for passing the certification exam with flying colors.

$14.99 / $24.99

Setup

  • 1. Installation Setup and Overview
    7m
  • 2. IDEs and Course Resources
    11m
  • 3. iPython/Jupyter Notebook Overview
    15m

Learning Numpy

  • 1. Creating arrays
    7m
  • 2. Using arrays and scalars
    5m
  • 3. Indexing Arrays
    14m
  • 4. Array Transposition
    4m
  • 5. Universal Array Function
    6m
  • 6. Array Processing
    22m
  • 7. Array Input and Output
    8m

Intro to Pandas

  • 1. Series
    14m
  • 2. DataFrames
    18m
  • 3. Index objects
    5m
  • 4. Reindex
    16m
  • 5. Drop Entry
    6m
  • 6. Selecting Entries
    10m
  • 7. Data Alignment
    10m
  • 8. Rank and Sort
    6m
  • 9. Summary Statistics
    23m
  • 10. Missing Data
    12m
  • 11. Index Hierarchy
    14m

Working with Data: Part 1

  • 1. Reading and Writing Text Files
    10m
  • 2. JSON with Python
    4m
  • 3. HTML with Python
    5m
  • 4. Microsoft Excel files with Python
    4m

Working with Data: Part 2

  • 1. Merge
    21m
  • 2. Merge on Index
    13m
  • 3. Concatenate
    9m
  • 4. Combining DataFrames
    10m
  • 5. Reshaping
    8m
  • 6. Pivoting
    6m
  • 7. Duplicates in DataFrames
    6m
  • 8. Mapping
    4m
  • 9. Replace
    3m
  • 10. Rename Index
    6m
  • 11. Binning
    6m
  • 12. Outliers
    7m
  • 13. Permutation
    5m

Working with Data: Part 3

  • 1. GroupBy on DataFrames
    18m
  • 2. GroupBy on Dict and Series
    13m
  • 3. Aggregation
    13m
  • 4. Splitting Applying and Combining
    10m
  • 5. Cross Tabulation
    5m

Data Visualization

  • 1. Installing Seaborn
    2m
  • 2. Histograms
    9m
  • 3. Kernel Density Estimate Plots
    26m
  • 4. Combining Plot Styles
    6m
  • 5. Box and Violin Plots
    9m
  • 6. Regression Plots
    19m
  • 7. Heatmaps and Clustered Matrices
    17m

Example Projects.

  • 1. Data Projects Preview
    3m
  • 2. Intro to Data Projects
    5m
  • 3. Titanic Project - Part 1
    17m
  • 4. Titanic Project - Part 2
    16m
  • 5. Titanic Project - Part 3
    16m
  • 6. Titanic Project - Part 4
    2m
  • 7. Intro to Data Project - Stock Market Analysis
    3m
  • 8. Data Project - Stock Market Analysis Part 1
    11m
  • 9. Data Project - Stock Market Analysis Part 2
    18m
  • 10. Data Project - Stock Market Analysis Part 3
    10m
  • 11. Data Project - Stock Market Analysis Part 4
    7m
  • 12. Data Project - Stock Market Analysis Part 5
    28m
  • 13. Data Project - Intro to Election Analysis
    2m
  • 14. Data Project - Election Analysis Part 1
    18m
  • 15. Data Project - Election Analysis Part 2
    21m
  • 16. Data Project - Election Analysis Part 3
    15m
  • 17. Data Project - Election Analysis Part 4
    26m

Machine Learning

  • 1. Introduction to Machine Learning with SciKit Learn
    13m
  • 2. Linear Regression Part 1
    18m
  • 3. Linear Regression Part 2
    18m
  • 4. Linear Regression Part 3
    19m
  • 5. Linear Regression Part 4
    22m
  • 6. Logistic Regression Part 1
    14m
  • 7. Logistic Regression Part 2
    14m
  • 8. Logistic Regression Part 3
    12m
  • 9. Logistic Regression Part 4
    22m
  • 10. Multi Class Classification Part 1 - Logistic Regression
    19m
  • 11. Multi Class Classification Part 2 - k Nearest Neighbor
    23m
  • 12. Support Vector Machines Part 1
    13m
  • 13. Support Vector Machines - Part 2
    29m
  • 14. Naive Bayes Part 1
    10m
  • 15. Naive Bayes Part 2
    12m
  • 16. Decision Trees and Random Forests
    32m
  • 17. Natural Language Processing Part 1
    7m
  • 18. Natural Language Processing Part 2
    16m
  • 19. Natural Language Processing Part 3
    21m
  • 20. Natural Language Processing Part 4
    16m

Appendix: Statistics Overview

  • 1. Intro to Appendix B
    3m
  • 2. Discrete Uniform Distribution
    6m
  • 3. Continuous Uniform Distribution
    7m
  • 4. Binomial Distribution
    13m
  • 5. Poisson Distribution
    11m
  • 6. Normal Distribution
    6m
  • 7. Sampling Techniques
    5m
  • 8. T-Distribution
    5m
  • 9. Hypothesis Testing and Confidence Intervals
    20m
  • 10. Chi Square Test and Distribution
    3m
  • 11. Bayes Theorem
    10m

Appendix: SQL and Python

  • 1. Introduction to SQL with Python
    10m
  • 2. SQL - SELECT,DISTINCT,WHERE,AND & OR
    10m
  • 3. SQL WILDCARDS, ORDER BY, GROUP BY and Aggregate Functions
    8m

Appendix: Web Scraping with Python

  • 1. Web Scraping Part 1
    12m
  • 2. Web Scraping Part 2
    12m

Appendix: Python Special Offers

  • 1. Python Overview Part 1
    19m
  • 2. Python Overview Part 2
    12m
  • 3. Python Overview Part 3
    10m
Study4Pass does not provide real Microsoft exam questions. Similarly, Study4Pass does not supply real Amazon exam questions. The materials offered by Study4Pass lack real questions and answers from Cisco's certification exams. The CFA Institute neither endorses nor assures the accuracy or quality of Study4Pass content. CFA® and Chartered Financial Analyst® are registered trademarks held by the CFA Institute.

© study4pass.com 2025. All rights reserved.