Professional Data Engineer: Professional Data Engineer on Google Cloud Platform

Professional Data Engineer: Professional Data Engineer on Google Cloud Platform

Get ready for your exam by enrolling in our comprehensive training course. This course includes a full set of instructional videos designed to equip you with in-depth knowledge essential for passing the certification exam with flying colors.

$14.99 / $24.99

You, This Course and Us

  • 1. You, This Course and Us
    2m 1s

Introduction

  • 1. Theory, Practice and Tests
    10m 26s
  • 2. Lab: Setting Up A GCP Account
    7m
  • 3. Lab: Using The Cloud Shell
    6m 1s

Compute

  • 1. Compute Options
    9m 16s
  • 2. Google Compute Engine (GCE)
    7m 38s
  • 3. Lab: Creating a VM Instance
    5m 59s
  • 4. More GCE
    8m 12s
  • 5. Lab: Editing a VM Instance
    4m 45s
  • 6. Lab: Creating a VM Instance Using The Command Line
    4m 43s
  • 7. Lab: Creating And Attaching A Persistent Disk
    4m
  • 8. Google Container Engine - Kubernetes (GKE)
    10m 33s
  • 9. More GKE
    9m 54s
  • 10. Lab: Creating A Kubernetes Cluster And Deploying A Wordpress Container
    6m 55s
  • 11. App Engine
    6m 48s
  • 12. Contrasting App Engine, Compute Engine and Container Engine
    6m 3s
  • 13. Lab: Deploy And Run An App Engine App
    7m 29s

Storage

  • 1. Storage Options
    9m 48s
  • 2. Quick Take
    13m 41s
  • 3. Cloud Storage
    10m 37s
  • 4. Lab: Working With Cloud Storage Buckets
    5m 25s
  • 5. Lab: Bucket And Object Permissions
    3m 52s
  • 6. Lab: Life cycle Management On Buckets
    3m 12s
  • 7. Lab: Running A Program On a VM Instance And Storing Results on Cloud Storage
    7m 9s
  • 8. Transfer Service
    5m 7s
  • 9. Lab: Migrating Data Using The Transfer Service
    5m 32s
  • 10. Lab: Cloud Storage ACLs and API access with Service Account
    7m 50s
  • 11. Lab: Cloud Storage Customer-Supplied Encryption Keys and Life-Cycle Management
    9m 28s
  • 12. Lab: Cloud Storage Versioning, Directory Sync
    8m 42s

Cloud SQL, Cloud Spanner ~ OLTP ~ RDBMS

  • 1. Cloud SQL
    7m 40s
  • 2. Lab: Creating A Cloud SQL Instance
    7m 55s
  • 3. Lab: Running Commands On Cloud SQL Instance
    6m 31s
  • 4. Lab: Bulk Loading Data Into Cloud SQL Tables
    9m 9s
  • 5. Cloud Spanner
    7m 25s
  • 6. More Cloud Spanner
    9m 18s
  • 7. Lab: Working With Cloud Spanner
    6m 49s

BigTable ~ HBase = Columnar Store

  • 1. BigTable Intro
    7m 57s
  • 2. Columnar Store
    8m 12s
  • 3. Denormalised
    9m 2s
  • 4. Column Families
    8m 10s
  • 5. BigTable Performance
    13m 19s
  • 6. Lab: BigTable demo
    7m 39s

Datastore ~ Document Database

  • 1. Datastore
    14m 10s
  • 2. Lab: Datastore demo
    6m 42s

BigQuery ~ Hive ~ OLAP

  • 1. BigQuery Intro
    11m 3s
  • 2. BigQuery Advanced
    9m 59s
  • 3. Lab: Loading CSV Data Into Big Query
    9m 4s
  • 4. Lab: Running Queries On Big Query
    5m 26s
  • 5. Lab: Loading JSON Data With Nested Tables
    7m 28s
  • 6. Lab: Public Datasets In Big Query
    8m 16s
  • 7. Lab: Using Big Query Via The Command Line
    7m 45s
  • 8. Lab: Aggregations And Conditionals In Aggregations
    9m 51s
  • 9. Lab: Subqueries And Joins
    5m 44s
  • 10. Lab: Regular Expressions In Legacy SQL
    5m 36s
  • 11. Lab: Using The With Statement For SubQueries
    10m 45s

Dataflow ~ Apache Beam

  • 1. Data Flow Intro
    11m 4s
  • 2. Apache Beam
    3m 42s
  • 3. Lab: Running A Python Data flow Program
    12m 56s
  • 4. Lab: Running A Java Data flow Program
    13m 42s
  • 5. Lab: Implementing Word Count In Dataflow Java
    11m 17s
  • 6. Lab: Executing The Word Count Dataflow
    4m 37s
  • 7. Lab: Executing MapReduce In Dataflow In Python
    9m 50s
  • 8. Lab: Executing MapReduce In Dataflow In Java
    6m 8s
  • 9. Lab: Dataflow With Big Query As Source And Side Inputs
    15m 50s
  • 10. Lab: Dataflow With Big Query As Source And Side Inputs 2
    6m 28s

Dataproc ~ Managed Hadoop

  • 1. Data Proc
    8m 28s
  • 2. Lab: Creating And Managing A Dataproc Cluster
    8m 11s
  • 3. Lab: Creating A Firewall Rule To Access Dataproc
    8m 25s
  • 4. Lab: Running A PySpark Job On Dataproc
    7m 39s
  • 5. Lab: Running The PySpark REPL Shell And Pig Scripts On Dataproc
    8m 44s
  • 6. Lab: Submitting A Spark Jar To Dataproc
    2m 10s
  • 7. Lab: Working With Dataproc Using The GCloud CLI
    8m 19s

Pub/Sub for Streaming

  • 1. Pub Sub
    8m 23s
  • 2. Lab: Working With Pubsub On The Command Line
    5m 35s
  • 3. Lab: Working With PubSub Using The Web Console
    4m 40s
  • 4. Lab: Setting Up A Pubsub Publisher Using The Python Library
    5m 52s
  • 5. Lab: Setting Up A Pubsub Subscriber Using The Python Library
    4m 8s
  • 6. Lab: Publishing Streaming Data Into Pubsub
    8m 18s
  • 7. Lab: Reading Streaming Data From PubSub And Writing To BigQuery
    10m 14s
  • 8. Lab: Executing A Pipeline To Read Streaming Data And Write To BigQuery
    5m 54s
  • 9. Lab: Pubsub Source BigQuery Sink
    10m 20s

Datalab ~ Jupyter

  • 1. Data Lab
    3m
  • 2. Lab: Creating And Working On A Datalab Instance
    4m 1s
  • 3. Lab: Importing And Exporting Data Using Datalab
    12m 14s
  • 4. Lab: Using The Charting API In Datalab
    6m 43s

TensorFlow and Machine Learning

  • 1. Introducing Machine Learning
    8m 4s
  • 2. Representation Learning
    10m 27s
  • 3. NN Introduced
    7m 35s
  • 4. Introducing TF
    7m 16s
  • 5. Lab: Simple Math Operations
    8m 46s
  • 6. Computation Graph
    10m 17s
  • 7. Tensors
    9m 2s
  • 8. Lab: Tensors
    5m 3s
  • 9. Linear Regression Intro
    9m 57s
  • 10. Placeholders and Variables
    8m 44s
  • 11. Lab: Placeholders
    6m 36s
  • 12. Lab: Variables
    7m 49s
  • 13. Lab: Linear Regression with Made-up Data
    4m 52s
  • 14. Image Processing
    8m 5s
  • 15. Images As Tensors
    8m 16s
  • 16. Lab: Reading and Working with Images
    8m 6s
  • 17. Lab: Image Transformations
    6m 37s
  • 18. Introducing MNIST
    4m 13s
  • 19. K-Nearest Neigbors
    7m 42s
  • 20. One-hot Notation and L1 Distance
    7m 31s
  • 21. Steps in the K-Nearest-Neighbors Implementation
    9m 32s
  • 22. Lab: K-Nearest-Neighbors
    14m 14s
  • 23. Learning Algorithm
    10m 58s
  • 24. Individual Neuron
    9m 52s
  • 25. Learning Regression
    7m 51s
  • 26. Learning XOR
    10m 27s
  • 27. XOR Trained
    11m 11s

Regression in TensorFlow

  • 1. Lab: Access Data from Yahoo Finance
    2m 49s
  • 2. Non TensorFlow Regression
    5m 53s
  • 3. Lab: Linear Regression - Setting Up a Baseline
    11m 19s
  • 4. Gradient Descent
    9m 56s
  • 5. Lab: Linear Regression
    14m 42s
  • 6. Lab: Multiple Regression in TensorFlow
    9m 15s
  • 7. Logistic Regression Introduced
    10m 16s
  • 8. Linear Classification
    5m 25s
  • 9. Lab: Logistic Regression - Setting Up a Baseline
    7m 33s
  • 10. Logit
    8m 33s
  • 11. Softmax
    11m 55s
  • 12. Argmax
    12m 13s
  • 13. Lab: Logistic Regression
    16m 56s
  • 14. Estimators
    4m 10s
  • 15. Lab: Linear Regression using Estimators
    7m 49s
  • 16. Lab: Logistic Regression using Estimators
    4m 54s

Vision, Translate, NLP and Speech: Trained ML APIs

  • 1. Lab: Taxicab Prediction - Setting up the dataset
    14m 38s
  • 2. Lab: Taxicab Prediction - Training and Running the model
    11m 22s
  • 3. Lab: The Vision, Translate, NLP and Speech API
    10m 54s
  • 4. Lab: The Vision API for Label and Landmark Detection
    7m

Virtual Machines and Images

  • 1. Live Migration
    10m 17s
  • 2. Machine Types and Billing
    9m 21s
  • 3. Sustained Use and Committed Use Discounts
    7m 3s
  • 4. Rightsizing Recommendations
    2m 22s
  • 5. RAM Disk
    2m 7s
  • 6. Images
    7m 45s
  • 7. Startup Scripts And Baked Images
    7m 31s

VPCs and Interconnecting Networks

  • 1. VPCs And Subnets
    11m 14s
  • 2. Global VPCs, Regional Subnets
    11m 19s
  • 3. IP Addresses
    11m 39s
  • 4. Lab: Working with Static IP Addresses
    5m 46s
  • 5. Routes
    7m 36s
  • 6. Firewall Rules
    15m 33s
  • 7. Lab: Working with Firewalls
    7m 5s
  • 8. Lab: Working with Auto Mode and Custom Mode Networks
    19m 32s
  • 9. Lab: Bastion Host
    7m 10s
  • 10. Cloud VPN
    7m 27s
  • 11. Lab: Working with Cloud VPN
    11m 11s
  • 12. Cloud Router
    10m 31s
  • 13. Lab: Using Cloud Routers for Dynamic Routing
    14m 7s
  • 14. Dedicated Interconnect Direct and Carrier Peering
    8m 10s
  • 15. Shared VPCs
    10m 11s
  • 16. Lab: Shared VPCs
    6m 17s
  • 17. VPC Network Peering
    10m 10s
  • 18. Lab: VPC Peering
    7m 17s
  • 19. Cloud DNS And Legacy Networks
    5m 19s

Managed Instance Groups and Load Balancing

  • 1. Managed and Unmanaged Instance Groups
    10m 53s
  • 2. Types of Load Balancing
    5m 46s
  • 3. Overview of HTTP(S) Load Balancing
    9m 20s
  • 4. Forwarding Rules Target Proxy and Url Maps
    8m 31s
  • 5. Backend Service and Backends
    9m 28s
  • 6. Load Distribution and Firewall Rules
    4m 28s
  • 7. Lab: HTTP(S) Load Balancing
    11m 21s
  • 8. Lab: Content Based Load Balancing
    7m 6s
  • 9. SSL Proxy and TCP Proxy Load Balancing
    5m 6s
  • 10. Lab: SSL Proxy Load Balancing
    7m 49s
  • 11. Network Load Balancing
    5m 8s
  • 12. Internal Load Balancing
    7m 16s
  • 13. Autoscalers
    11m 52s
  • 14. Lab: Autoscaling with Managed Instance Groups
    12m 22s

Ops and Security

  • 1. StackDriver
    12m 8s
  • 2. StackDriver Logging
    7m 39s
  • 3. Lab: Stackdriver Resource Monitoring
    8m 12s
  • 4. Lab: Stackdriver Error Reporting and Debugging
    5m 52s
  • 5. Cloud Deployment Manager
    6m 5s
  • 6. Lab: Using Deployment Manager
    5m 10s
  • 7. Lab: Deployment Manager and Stackdriver
    8m 27s
  • 8. Cloud Endpoints
    3m 48s
  • 9. Cloud IAM: User accounts, Service accounts, API Credentials
    8m 53s
  • 10. Cloud IAM: Roles, Identity-Aware Proxy, Best Practices
    9m 31s
  • 11. Lab: Cloud IAM
    11m 57s
  • 12. Data Protection
    12m 2s

Appendix: Hadoop Ecosystem

  • 1. Introducing the Hadoop Ecosystem
    1m 34s
  • 2. Hadoop
    9m 43s
  • 3. HDFS
    10m 55s
  • 4. MapReduce
    10m 34s
  • 5. Yarn
    5m 29s
  • 6. Hive
    7m 19s
  • 7. Hive vs
    7m 10s
  • 8. HQL vs
    7m 36s
  • 9. OLAP in Hive
    7m 34s
  • 10. Windowing Hive
    8m 22s
  • 11. Pig
    8m 4s
  • 12. More Pig
    6m 38s
  • 13. Spark
    8m 54s
  • 14. More Spark
    11m 45s
  • 15. Streams Intro
    7m 44s
  • 16. Microbatches
    5m 40s
  • 17. Window Types
    5m 46s
Study4Pass does not provide real Microsoft exam questions. Similarly, Study4Pass does not supply real Amazon exam questions. The materials offered by Study4Pass lack real questions and answers from Cisco's certification exams. The CFA Institute neither endorses nor assures the accuracy or quality of Study4Pass content. CFA® and Chartered Financial Analyst® are registered trademarks held by the CFA Institute.

© study4pass.com 2025. All rights reserved.