The Google Cloud for ML with TensorFlow Big Data with Managed Hadoop: The Google Cloud for ML with TensorFlow, Big Data with Managed Hadoop

Get ready for your exam by enrolling in our comprehensive training course. This course includes a full set of instructional videos designed to equip you with in-depth knowledge essential for passing the certification exam with flying colors.
$14.99 / $24.99
Introduction
-
1. Theory, Practice and Tests10m 26s
-
2. Why Cloud?9m 43s
-
3. Hadoop and Distributed Computing9m 1s
-
4. On-premise, Colocation or Cloud?10m 5s
-
5. Introducing the Google Cloud Platform13m 20s
-
6. Lab: Setting Up A GCP Account7m
-
7. Lab: Using The Cloud Shell6m 1s
Compute Choices
-
1. Compute Options9m 16s
-
2. Google Compute Engine (GCE)7m 38s
-
3. More GCE8m 12s
-
4. Lab: Creating a VM Instance5m 59s
-
5. Lab: Editing a VM Instance4m 45s
-
6. Lab: Creating a VM Instance Using The Command Line4m 43s
-
7. Lab: Creating And Attaching A Persistent Disk4m
-
8. Google Container Engine - Kubernetes (GKE)10m 33s
-
9. More GKE9m 54s
-
10. Lab: Creating A Kubernetes Cluster And Deploying A Wordpress Container6m 55s
-
11. App Engine6m 48s
-
12. Contrasting App Engine, Compute Engine and Container Engine6m 3s
-
13. Lab: Deploy And Run An App Engine App7m 29s
Storage
-
1. Storage Options9m 48s
-
2. Quick Take13m 41s
-
3. Cloud Storage10m 37s
-
4. Lab: Working With Cloud Storage Buckets5m 25s
-
5. Lab: Bucket And Object Permissions3m 52s
-
6. Lab: Life cycle Management On Buckets5m 6s
-
7. Lab: Running A Program On a VM Instance And Storing Results on Cloud Storage7m 9s
-
8. Transfer Service5m 7s
-
9. Lab: Migrating Data Using The Transfer Service5m 33s
Cloud SQL, Cloud Spanner ~ OLTP ~ RDBMS
-
1. Cloud SQL7m 40s
-
2. Lab: Creating A Cloud SQL Instance7m 55s
-
3. Lab: Running Commands On Cloud SQL Instance6m 31s
-
4. Lab: Bulk Loading Data Into Cloud SQL Tables9m 9s
-
5. Cloud Spanner7m 25s
-
6. More Cloud Spanner9m 18s
-
7. Lab: Working With Cloud Spanner6m 50s
BigTable ~ HBase = Columnar Store
-
1. BigTable Intro7m 57s
-
2. Columnar Store8m 12s
-
3. Denormalised9m 2s
-
4. Column Families8m 10s
-
5. BigTable Performance13m 19s
-
6. Lab: BigTable demo7m 39s
Datastore ~ Document Database
-
1. Datastore14m 10s
-
2. Lab: Datastore demo6m 42s
BigQuery ~ Hive ~ OLAP
-
1. BigQuery Intro11m 3s
-
2. BigQuery Advanced10m
-
3. Lab: Loading CSV Data Into Big Query9m 4s
-
4. Lab: Running Queries On Big Query5m 26s
-
5. Lab: Loading JSON Data With Nested Tables7m 28s
-
6. Lab: Public Datasets In Big Query8m 16s
-
7. Lab: Using Big Query Via The Command Line7m 45s
-
8. Lab: Aggregations And Conditionals In Aggregations9m 51s
-
9. Lab: Subqueries And Joins5m 44s
-
10. Lab: Regular Expressions In Legacy SQL5m 36s
-
11. Lab: Using The With Statement For SubQueries10m 45s
Dataflow ~ Apache Beam
-
1. Data Flow Intro11m 4s
-
2. Apache Beam3m 42s
-
3. Lab: Running A Python Data flow Program12m 56s
-
4. Lab: Running A Java Data flow Program13m 42s
-
5. Lab: Implementing Word Count In Dataflow Java11m 18s
-
6. Lab: Executing The Word Count Dataflow4m 37s
-
7. Lab: Executing MapReduce In Dataflow In Python9m 50s
-
8. Lab: Executing MapReduce In Dataflow In Java6m 8s
-
9. Lab: Dataflow With Big Query As Source And Side Inputs15m 50s
-
10. Lab: Dataflow With Big Query As Source And Side Inputs 26m 28s
Dataproc ~ Managed Hadoop
-
1. Data Proc8m 28s
-
2. Lab: Creating And Managing A Dataproc Cluster8m 11s
-
3. Lab: Creating A Firewall Rule To Access Dataproc8m 25s
-
4. Lab: Running A PySpark Job On Dataproc7m 39s
-
5. Lab: Running The PySpark REPL Shell And Pig Scripts On Dataproc8m 44s
-
6. Lab: Submitting A Spark Jar To Dataproc2m 10s
-
7. Lab: Working With Dataproc Using The GCloud CLI8m 19s
Pub/Sub for Streaming
-
1. Pub Sub8m 23s
-
2. Lab: Working With Pubsub On The Command Line5m 35s
-
3. Lab: Working With PubSub Using The Web Console4m 40s
-
4. Lab: Setting Up A Pubsub Publisher Using The Python Library5m 52s
-
5. Lab: Setting Up A Pubsub Subscriber Using The Python Library4m 8s
-
6. Lab: Publishing Streaming Data Into Pubsub8m 18s
-
7. Lab: Reading Streaming Data From PubSub And Writing To BigQuery10m 14s
-
8. Lab: Executing A Pipeline To Read Streaming Data And Write To BigQuery5m 54s
-
9. Lab: Pubsub Source BigQuery Sink10m 20s
Datalab ~ Jupyter
-
1. Data Lab3m
-
2. Lab: Creating And Working On A Datalab Instance10m 30s
-
3. Lab: Importing And Exporting Data Using Datalab12m 14s
-
4. Lab: Using The Charting API In Datalab6m 43s
TensorFlow and Machine Learning
-
1. Introducing Machine Learning8m 4s
-
2. Representation Learning10m 27s
-
3. NN Introduced7m 35s
-
4. Introducing TF7m 16s
-
5. Lab: Simple Math Operations8m 46s
-
6. Computation Graph10m 17s
-
7. Tensors9m 2s
-
8. Lab: Tensors5m 3s
-
9. Linear Regression Intro9m 57s
-
10. Placeholders and Variables8m 44s
-
11. Lab: Placeholders6m 37s
-
12. Lab: Variables7m 49s
-
13. Lab: Linear Regression with Made-up Data4m 52s
-
14. Image Processing8m 6s
-
15. Images As Tensors8m 16s
-
16. Lab: Reading and Working with Images8m 6s
-
17. Lab: Image Transformations6m 37s
-
18. Introducing MNIST4m 13s
-
19. K-Nearest Neigbors as Unsupervised Learning7m 43s
-
20. One-hot Notation and L1 Distance7m 31s
-
21. Steps in the K-Nearest-Neighbors Implementation9m 32s
-
22. Lab: K-Nearest-Neighbors14m 14s
-
23. Learning Algorithm10m 59s
-
24. Individual Neuron9m 52s
-
25. Learning Regression7m 51s
-
26. Learning XOR10m 27s
-
27. XOR Trained11m 11s
Regression in TensorFlow
-
1. Lab: Access Data from Yahoo Finance2m 49s
-
2. Non TensorFlow Regression8m 5s
-
3. Lab: Linear Regression - Setting Up a Baseline11m 19s
-
4. Gradient Descent9m 57s
-
5. Lab: Linear Regression14m 42s
-
6. Lab: Multiple Regression in TensorFlow9m 16s
-
7. Logistic Regression Introduced10m 16s
-
8. Linear Classification5m 25s
-
9. Lab: Logistic Regression - Setting Up a Baseline7m 33s
-
10. Logit8m 33s
-
11. Softmax11m 55s
-
12. Argmax12m 13s
-
13. Lab: Logistic Regression16m 56s
-
14. Estimators4m 10s
-
15. Lab: Linear Regression using Estimators7m 49s
-
16. Lab: Logistic Regression using Estimators4m 54s
Vision, Translate, NLP and Speech: Trained ML APIs
-
1. Lab: Taxicab Prediction - Setting up the dataset14m 38s
-
2. Lab: Taxicab Prediction - Training and Running the model11m 22s
-
3. Lab: The Vision, Translate, NLP and Speech API10m 54s
-
4. Lab: The Vision API for Label and Landmark Detection7m
Networking
-
1. Virtual Private Clouds7m 4s
-
2. VPC and Firewalls9m 26s
-
3. XPC or Shared VPC7m 39s
-
4. VPN8m 49s
-
5. Types of Load Balancing6m 46s
-
6. Proxy and Pass-through load balancing9m 49s
-
7. Internal load balancing6m 2s
Ops and Security
-
1. StackDriver12m 8s
-
2. StackDriver Logging7m 39s
-
3. Cloud Deployment Manager6m 6s
-
4. Cloud Endpoints3m 48s
-
5. Security and Service Accounts7m 44s
-
6. OAuth and End-user accounts8m 31s
-
7. Identity and Access Management8m 31s
-
8. Data Protection12m 2s
Appendix: Hadoop Ecosystem
-
1. Introducing the Hadoop Ecosystem1m 35s
-
2. Hadoop9m 43s
-
3. HDFS10m 55s
-
4. MapReduce10m 34s
-
5. Yarn5m 29s
-
6. Hive7m 19s
-
7. Hive vs7m 10s
-
8. HQL vs7m 36s
-
9. OLAP in Hive7m 34s
-
10. Windowing Hive8m 22s
-
11. Pig8m 4s
-
12. More Pig6m 38s
-
13. Spark8m 55s
-
14. More Spark11m 45s
-
15. Streams Intro7m 44s
-
16. Microbatches5m 41s
-
17. Window Types5m 46s