Elasticsearch from Scratch Complete Course

Get ready for your exam by enrolling in our comprehensive training course. This course includes a full set of instructional videos designed to equip you with in-depth knowledge essential for passing the certification exam with flying colors.
$14.99 / $24.99
Getting Started
-
1. Introduction to Elasticsearch5m 33s
-
2. Overview of the Elastic Stack6m 5s
Architecture of Elasticsearch
-
1. Introduction to this section1m 12s
-
2. Nodes & Clusters5m 1s
-
3. Indices & Documents1m 32s
-
4. A word on types1m 21s
-
5. Sharding2m 56s
-
6. Replication2m 43s
-
7. Keeping replicas synchronized2m 34s
-
8. Searching for data3m 14s
-
9. Distributing documents across shards1m 16s
Installing Elasticsearch & Kibana
-
1. Installing Elasticsearch on Mac/Linux5m 18s
-
2. Installing Elasticsearch on Windows5m 33s
-
3. Configuring Elasticsearch3m 41s
-
4. Installing Kibana on Mac/Linux2m 49s
-
5. Installing Kibana on Windows2m 40s
-
6. Configuring Kibana2m 2s
-
7. Introduction to Kibana and dev tools6m 34s
Managing Documents
-
1. Creating an index1m 32s
-
2. Adding documents3m 47s
-
3. Retrieving documents by ID1m 13s
-
4. Replacing documents1m 26s
-
5. Updating documents3m 39s
-
6. Scripted updates3m 6s
-
7. Upserts2m 29s
-
8. Deleting documents3m 28s
-
9. Deleting indices46s
-
10. Batch processing5m 54s
-
11. Importing test data with cURL2m 49s
-
12. Exploring the cluster6m 50s
Mapping
-
1. Introduction to mapping1m 23s
-
2. Dynamic mapping3m 53s
-
3. Meta fields2m 47s
-
4. Field data types13m 46s
-
5. Adding mappings to existing indices1m 55s
-
6. Changing existing mappings3m 49s
-
7. Mapping parameters7m 57s
-
8. Adding multi-fields mappings2m 38s
-
9. Defining custom date formats5m 42s
-
10. Picking up new fields without dynamic mapping7m 31s
-
11. Wrap up37s
Analysis & Analyzers
-
1. Introduction to the analysis process1m 41s
-
2. A closer look at analyzers4m 43s
-
3. Using the Analyze API3m 28s
-
4. Understanding the inverted index4m 31s
-
5. Overview of character filters2m 34s
-
6. Overview of tokenizers8m 34s
-
7. Overview of token filters6m 24s
-
8. Overview of built-in analyzers4m 58s
-
9. Configuring built-in analyzers and token filters4m 40s
-
10. Creating custom analyzers3m 11s
-
11. Using analyzers in mappings3m 18s
-
12. Adding analyzers to existing indices3m 27s
-
13. A word on stop words1m 1s
-
14. Wrap up1m 1s
Introduction to Searching
-
1. Search methods1m 49s
-
2. Searching with the request URI3m 48s
-
3. Introducing the Query DSL2m 20s
-
4. Understanding query results1m 55s
-
5. Understanding relevance scores9m 53s
-
6. Debugging unexpected search results1m 41s
-
7. Query contexts2m 26s
-
8. Full text queries vs term level queries5m 56s
Term Level Queries
-
1. Introduction to term level queries1m 10s
-
2. Searching for a term2m 26s
-
3. Searching for multiple terms1m 46s
-
4. Retrieving documents based on IDs1m 5s
-
5. Matching documents with range values3m 44s
-
6. Working with relative dates (date math)7m 35s
-
7. Matching documents with non-null values1m 57s
-
8. Matching based on prefixes1m 17s
-
9. Searching with wildcards2m 32s
-
10. Searching with regular expressions2m 56s
Full Text Queries
-
1. Introduction to full text queries2m 21s
-
2. Flexible matching with the match query4m 43s
-
3. Matching phrases1m 36s
-
4. Searching multiple fields2m 36s
Adding Boolean Logic to Queries
-
1. Introduction to compound queries49s
-
2. Querying with boolean logic10m 35s
-
3. Debugging bool queries with named queries3m 14s
-
4. How the “match” query works6m 25s
Joining Queries
-
1. Introduction to this section2m 14s
-
2. Querying nested objects5m 49s
-
3. Nested inner hits3m 57s
-
4. Mapping document relationships2m 40s
-
5. Adding documents6m 32s
-
6. Querying by parent ID2m 49s
-
7. Querying child documents by parent5m 12s
-
8. Querying parent by child documents5m 53s
-
9. Multi-level relations9m 39s
-
10. Parent/child inner hits1m 58s
-
11. Terms lookup mechanism6m 9s
-
12. Join limitations1m 16s
-
13. Join field performance considerations3m 57s
Controlling Query Results
-
1. Specifying the result format2m 59s
-
2. Source filtering4m 23s
-
3. Specifying the result size1m 33s
-
4. Specifying an offset2m 7s
-
5. Pagination5m 4s
-
6. Sorting results5m 14s
-
7. Sorting by multi-value fields2m 25s
-
8. Filters3m 50s
Aggregations
-
1. Introduction to aggregations2m 17s
-
2. Metric aggregations8m 55s
-
3. Introduction to bucket aggregations6m 23s
-
4. Document counts are approximate6m 22s
-
5. Nested aggregations5m 19s
-
6. Filtering out documents2m 29s
-
7. Defining bucket rules with filters3m 13s
-
8. Range aggregations7m 24s
-
9. Histograms7m 15s
-
10. Global aggregation2m 57s
-
11. Missing field values2m 25s
-
12. Aggregating nested objects2m 14s
Improving Search Results
-
1. Introduction to this section27s
-
2. Proximity searches7m 15s
-
3. Affecting relevance scoring with proximity5m 32s
-
4. Fuzzy match query (handling typos)8m 47s
-
5. Fuzzy query2m 31s
-
6. Adding synonyms12m 8s
-
7. Adding synonyms from file5m 38s
-
8. Highlighting matches in fields6m 2s
-
9. Stemming5m 23s
Building a Web Application Search Engine
-
1. Introducing Application & Client Libraries6m 40s
-
2. Adding a simple query6m 30s
-
3. Paginating search results8m 34s
-
4. Adding fuzziness4m 48s
-
5. Aggregations & Filters17m 36s
-
6. Adding product details page3m 41s
Conclusion
-
1. Last words & summing up47s
Legacy Content (version 2.x)
-
1. Introduction to this course1m 6s
-
2. Introduction to Elasticsearch3m 7s
-
3. Terminology8m 16s
-
4. Installing Elasticsearch3m 19s
-
5. Installing Kibana4m 23s
-
6. Installing Sense2m 59s
-
7. Creating an index4m 2s
-
8. Deleting an index1m 17s
-
9. Introduction to mapping5m 1s
-
10. Field data types13m 9s
-
11. Meta fields6m 15s
-
12. Adding mappings4m 13s
-
13. Adding test data2m 22s
-
14. Adding documents4m 34s
-
15. Replacing documents1m 47s
-
16. Updating documents2m 5s
-
17. Deleting documents1m 13s
-
18. Batch processing8m 1s
-
19. Retrieving document by ID1m 40s
-
20. Introduction to searching7m 15s
-
21. Searching with query strings: Basics4m 21s
-
22. Searching with query strings: Bool query4m
-
23. Searching with query strings: Phrase query3m 20s
-
24. Searching with query strings: Remarks1m 17s
-
25. Searching with Query DSL: Full text queries5m 26s
-
26. Searching with Query DSL: Term level queries7m 1s
-
27. Searching with Query DSL: Compound queries7m 39s
-
28. Searching across indexes and types8m 20s
-
29. Fuzzy searches9m 21s
-
30. Proximity searches5m 54s
-
31. Boosting4m 27s
-
32. Filtering results3m 8s
-
33. Changing the size of result sets1m 51s
-
34. Pagination3m 31s
-
35. Sorting results2m 30s
-
36. Aggregations13m 40s