AWS Certified Machine Learning - Specialty: AWS Certified Machine Learning - Specialty (MLS-C01)

AWS Certified Machine Learning - Specialty: AWS Certified Machine Learning - Specialty (MLS-C01)

Get ready for your exam by enrolling in our comprehensive training course. This course includes a full set of instructional videos designed to equip you with in-depth knowledge essential for passing the certification exam with flying colors.

$14.99 / $24.99

Introduction

  • 1. Course Introduction: What to Expect
    6m

Data Engineering

  • 1. Section Intro: Data Engineering
    1m
  • 2. Amazon S3 - Overview
    5m
  • 3. Amazon S3 - Storage Tiers & Lifecycle Rules
    4m
  • 4. Amazon S3 Security
    8m
  • 5. Kinesis Data Streams & Kinesis Data Firehose
    9m
  • 6. Lab 1.1 - Kinesis Data Firehose
    6m
  • 7. Kinesis Data Analytics
    4m
  • 8. Lab 1.2 - Kinesis Data Analytics
    7m
  • 9. Kinesis Video Streams
    3m
  • 10. Kinesis ML Summary
    1m
  • 11. Glue Data Catalog & Crawlers
    3m
  • 12. Lab 1.3 - Glue Data Catalog
    4m
  • 13. Glue ETL
    2m
  • 14. Lab 1.4 - Glue ETL
    6m
  • 15. Lab 1.5 - Athena
    1m
  • 16. Lab 1 - Cleanup
    2m
  • 17. AWS Data Stores in Machine Learning
    3m
  • 18. AWS Data Pipelines
    3m
  • 19. AWS Batch
    2m
  • 20. AWS DMS - Database Migration Services
    2m
  • 21. AWS Step Functions
    3m
  • 22. Full Data Engineering Pipelines
    5m

Exploratory Data Analysis

  • 1. Section Intro: Data Analysis
    1m
  • 2. Python in Data Science and Machine Learning
    12m
  • 3. Example: Preparing Data for Machine Learning in a Jupyter Notebook.
    10m
  • 4. Types of Data
    5m
  • 5. Data Distributions
    6m
  • 6. Time Series: Trends and Seasonality
    4m
  • 7. Introduction to Amazon Athena
    5m
  • 8. Overview of Amazon Quicksight
    6m
  • 9. Types of Visualizations, and When to Use Them.
    5m
  • 10. Elastic MapReduce (EMR) and Hadoop Overview
    7m
  • 11. Apache Spark on EMR
    10m
  • 12. EMR Notebooks, Security, and Instance Types
    4m
  • 13. Feature Engineering and the Curse of Dimensionality
    7m
  • 14. Imputing Missing Data
    8m
  • 15. Dealing with Unbalanced Data
    6m
  • 16. Handling Outliers
    9m
  • 17. Binning, Transforming, Encoding, Scaling, and Shuffling
    8m
  • 18. Amazon SageMaker Ground Truth and Label Generation
    4m
  • 19. Lab: Preparing Data for TF-IDF with Spark and EMR, Part 1
    6m
  • 20. Lab: Preparing Data for TF-IDF with Spark and EMR, Part 2
    10m
  • 21. Lab: Preparing Data for TF-IDF with Spark and EMR, Part 3
    14m

Modeling

  • 1. Section Intro: Modeling
    2m
  • 2. Introduction to Deep Learning
    9m
  • 3. Convolutional Neural Networks
    12m
  • 4. Recurrent Neural Networks
    11m
  • 5. Deep Learning on EC2 and EMR
    2m
  • 6. Tuning Neural Networks
    5m
  • 7. Regularization Techniques for Neural Networks (Dropout, Early Stopping)
    7m
  • 8. Grief with Gradients: The Vanishing Gradient problem
    4m
  • 9. L1 and L2 Regularization
    3m
  • 10. The Confusion Matrix
    6m
  • 11. Precision, Recall, F1, AUC, and more
    7m
  • 12. Ensemble Methods: Bagging and Boosting
    4m
  • 13. Introducing Amazon SageMaker
    8m
  • 14. Linear Learner in SageMaker
    5m
  • 15. XGBoost in SageMaker
    3m
  • 16. Seq2Seq in SageMaker
    5m
  • 17. DeepAR in SageMaker
    4m
  • 18. BlazingText in SageMaker
    5m
  • 19. Object2Vec in SageMaker
    5m
  • 20. Object Detection in SageMaker
    4m
  • 21. Image Classification in SageMaker
    4m
  • 22. Semantic Segmentation in SageMaker
    4m
  • 23. Random Cut Forest in SageMaker
    3m
  • 24. Neural Topic Model in SageMaker
    3m
  • 25. Latent Dirichlet Allocation (LDA) in SageMaker
    3m
  • 26. K-Nearest-Neighbors (KNN) in SageMaker
    3m
  • 27. K-Means Clustering in SageMaker
    5m
  • 28. Principal Component Analysis (PCA) in SageMaker
    3m
  • 29. Factorization Machines in SageMaker
    4m
  • 30. IP Insights in SageMaker
    3m
  • 31. Reinforcement Learning in SageMaker
    12m
  • 32. Automatic Model Tuning
    6m
  • 33. Apache Spark with SageMaker
    3m
  • 34. Amazon Comprehend
    6m
  • 35. Amazon Translate
    2m
  • 36. Amazon Transcribe
    4m
  • 37. Amazon Polly
    6m
  • 38. Amazon Rekognition
    7m
  • 39. Amazon Forecast
    2m
  • 40. Amazon Lex
    3m
  • 41. The Best of the Rest: Other High-Level AWS Machine Learning Services
    3m
  • 42. Putting them All Together
    2m
  • 43. Lab: Tuning a Convolutional Neural Network on EC2, Part 1
    9m
  • 44. Lab: Tuning a Convolutional Neural Network on EC2, Part 2
    9m
  • 45. Lab: Tuning a Convolutional Neural Network on EC2, Part 3
    6m

ML Implementation and Operations

  • 1. Section Intro: Machine Learning Implementation and Operations
    1m
  • 2. SageMaker's Inner Details and Production Variants
    11m
  • 3. SageMaker On the Edge: SageMaker Neo and IoT Greengrass
    4m
  • 4. SageMaker Security: Encryption at Rest and In Transit
    5m
  • 5. SageMaker Security: VPC's, IAM, Logging, and Monitoring
    4m
  • 6. SageMaker Resource Management: Instance Types and Spot Training
    4m
  • 7. SageMaker Resource Management: Elastic Inference, Automatic Scaling, AZ's
    5m
  • 8. SageMaker Inference Pipelines
    2m
  • 9. Lab: Tuning, Deploying, and Predicting with Tensorflow on SageMaker - Part 1
    5m
  • 10. Lab: Tuning, Deploying, and Predicting with Tensorflow on SageMaker - Part 2
    11m
  • 11. Lab: Tuning, Deploying, and Predicting with Tensorflow on SageMaker - Part 3
    12m

Wrapping Up

  • 1. Section Intro: Wrapping Up
    1m
  • 2. More Preparation Resources
    6m
  • 3. Test-Taking Strategies, and What to Expect
    10m
  • 4. You Made It!
    1m
  • 5. Save 50% on your AWS Exam Cost!
    2m
  • 6. Get an Extra 30 Minutes on your AWS Exam - Non Native English Speakers only
    1m